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Geographic modeling of individual exposures using air pollution modeling techniques can help in
both the design of environmental epidemiologic studies and in the assignment of measures that
delineate regions that receive the highest exposure in space and time. Geographic modeling can
help in the interpretation of environmental sampling data associated with airborne concentration
or deposition, and can act as a sophisticated interpolator for such data, allowing values to be
assigned to locations between points where the data have actually been collected. Recent
advances allow for quantification of the uncertainty in a geographic model and the resulting
impact on estimates of association, variability, and study power. In this paper we present the
terminology and methodology of geographic modeling, describe applications to date in the field of
epidemiology, and evaluate the potential of this relatively new tool. - Environ Health Perspect
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The use of geographic modeling is relatively
new to environmental epidemiology. A
major purpose of the method is to use
available data to estimate exposure through
the external environment for individuals at
specific geographic sites and times. This is
done by identifying a source of exposure
and modeling the fate and transport of
contaminants to predict concentrations in
food, water, air, and soil. The model may
also include personal activity patterns that
could modify individual exposure levels
(1). Uncertainties in the exposure esti-
mates generated by geographic modeling
can be large but may be reduced by cali-
bration of model parameters against field
data. Quantification of the uncertainty in a
geographic model permits epidemiologists
to correct their results for the effects of
measurement error (2).

Some confusion exists between the
terms "GIS" and "geographic modeling."
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GIS, or geographic information system,
refers to a series of computerized maps
(a base map and overlays) that provide for
the storage and retrieval of an extensive
amount of geographically indexed data.
Although data storage and retrieval are the
primary functions of a GIS, such systems
readily lend themselves to geographic
analysis of health data, as in searching for
spatial clustering of disease, assessing dis-
ease rates by proximity to a pollution
source (3), or comparing census tracts sup-
posedly high in lead exposure with the
actual levels found in blood lead screening
records (4).

In comparison, geographic modeling
converts GIS data into quantities that
allow estimation of exposure with greater
and greater individualized precision
depending on the level of information
available on residential history and per-
sonal activity. For example, in a case-
control study of stillbirths, Ihrig et al. (5)
estimated the dispersion of airborne
arsenic from several sources, comparing
health outcome with the exposure esti-
mated for the mother's address at time of
hospital admission for delivery, i.e., resi-
dence late in pregnancy. A more individu-
alized approach was taken by Stevens et al.
(6) in a study of people potentially
exposed to radioactive fallout from nuclear
testing. Individual exposure levels were
obtained by integrating predictions of
concentrations of radionuclides in the
food supply at different locations and

time periods with questionnaire data on
residence history and the amount of milk
and vegetables consumed at various ages.

In both cases an explicit model was used
to compute the concentrations of concern
based on the science underlying the expo-
sure. This is in contrast to reliance on
implicit assumptions such as those inherent
in proximity analysis, i.e., that closeness to
a facility determines the degree of exposure.

Geographic modeling is appropriate in
an epidemiologic study either when an
investigator wants to go beyond proximity
as a measure of exposure or when direct
measurements of environmental pollutants
are too limited. Geographic modeling
strives to create the equivalent of a hypo-
thetical ideal monitoring system that
would have measured the concentration of
pollutants at all locations and times in the
medium and domain under study. As with
a real monitoring system, once the system is
validated, it is possible to use the output to
compute a cumulative exposure estimate for
a desired time period, taking into account
physiologic factors, lifestyle factors, and
residence/work history to the extent such
information is available.

Reconstruction of a monitoring system
by a geographic model based on release
rates and transport models has some advan-
tages over an actual system, which is inher-
ently limited in its geographical coverage.
Should a threshold be involved in causing a
particular health end point, relying on
monitor data that do not capture the high-
est exposures could miss the connection
(7). As a result, a combination of both
measurements and models offers the best
method for specifying exposures across a
large population (8).

Applications of Geographic
Modeling in Environmental
Epidemiology
Although geographic modeling has been
recognized for a number of years as an
important and rapidly developing tech-
nique (9-11), applications of spatial mod-
eling methods in the field of environmental
epidemiology have been limited until
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recently. Examples from the first wave of
epidemiologic research using air pollution
or groundwater modeling to estimate expo-
sure include a study of birth defects and
exposure to solvent-contaminated drinking
water (12); a study of cancer and exposure
to industrial air pollution (13); and a study
of releases from the Three Mile Island
(TMI) nuclear plant (14). Generally, no
attempt was made in these first-wave
studies to account for any changes in odds
ratios, regression coefficients, or confidence
limits that would result from uncertainty
in exposure modeling.

More recent studies have used increas-
ingly sophisticated modeling methods,
which account explicitly for model uncer-
tainty. This second wave of geographic
modeling includes studies of leukemia and
thyroid cancer in relation to radioactive fall-
out from nuclear testing in Utah (6,15-18).
An additional study is currently in progress,
namely the Hanford [Washington] Thyroid
Disease Study (19,20).

There have also been some recent
historical reconstructions of occupational
exposure that come close to the complexity
of the Utah and Hanford reconstructions
(21,22), although an analysis of the uncer-
tainty in exposure classification was not
included in these studies.

Table 1 lists the most recent geographic
modeling exercises along with the epidemi-
ologic studies that have used them. Table 2
describes the models and the methods used
to assess uncertainty.

To reach the level of sophistication
evident in the Utah and Hanford thyroid
studies (15,20), complex models were
needed whose development was funded by

a mandate from the U.S. Congress. Not all
epidemiologists will have the resources to
develop such models and research the para-
meters needed for them, nor is such sophis-
tication always required to provide a
suitable exposure marker. Simpler trans-
port models may be accurate enough if the
uncertainties in the health data do not jus-
tify more than a crude delineation between
the high- and low-exposure regions.

Similarly, it is not always necessary to
have as much individualized information as
was used in the Utah and Hanford recon-
structions (15,20). For instance, if location
is only available at the area level-say by zip
code of residence-then exposures can still
be assigned at the group level. Geographic
modeling has the advantage that it can
assign limits to exposure within the group.
If the range of exposures is small compared
to the spread across groups, group-level
assignments are not likely to introduce sig-
nificant errors in epidemiologic measures of
association or risk. Even if the estimated
exposure range within groups is large
enough to suggest that significant misclassi-
fication is possible, greater detail may still
not be warranted at an early stage of
research on the health effects of some envi-
ronmental exposure. Average exposure at
the group level may still be sufficient to dif-
ferentiate those likely to be highly exposed
from those with little exposure.

Nevertheless, it is preferable to have
individualized information. Questionnaires
usually provide the greatest opportunity to
obtain relevant data. Residential and occu-
pational histories can be taken that allow
exposure contributions to be summed
regardless of the number of geographic

Table 1. Geographic modeling exercises and their associated epidemiologic studies.

Exposure study
Hanford (Washington State)
Environmental Dose Reconstruction Project (20)
Fernald (Ohio) Dosimetry Reconstruction
Project (23)
Colorado Water Disinfection By-product Study (25,26)
[using EPANET model (27)]
Texas Smelter Exposure Reconstruction Study (5)
Belarus Chernobyl Thyroid Dose Reconstruction
Study (29)
Rocky Flats (Colorado) Dose and Exposure
Reconstruction Study (30)

Utah fallout dose reconstruction studies (15,16)

Three Mile Island (Pennsylvania) Dose
Reconstruction (32'

Associated epidemiologic studies

Hanford Thyroid Disease Study (in progress) (19)

Under consideration by the Centers for Disease
Control and Prevention (24)
Colorado Reproductive Outcome Study (26,28)

Arsenic stillbirth study (5)
Belarus Epidemiological Study (29)

No study known to be contemplated, although
some epidemiologic studies have been carried out
using earlier plutonium dose contours
Utah leukemia and thyroid epidemiologic studies
(6,17,18,31)
Three Mile Island epidemiologic studies (14,33)

moves an individual has made. Questions
can also be asked about dietary choices and
other personal activities that the analyst may
be able to use to individualize exposures, for
instance, if contamination information is
available by food product.

In a complex pathway study, exposure
information might be partly at the individ-
ual and partly at the group level. For
instance, analysts might be able to assign
exposure from inhalation at the individual
level, based on an address history, but only
be able to assign exposure from the food
pathway for a particular pollutant at a town
level based on survey data found in the lit-
erature on food consumption aggregated at
the town level.

Although the group-level exposure com-
ponent is not as accurate as the individual-
ized component, there are good reasons for
keeping it in the analysis. When sources of
area-wide exposure are unknown, unmea-
sured, or contribute to individual exposure
in ways not fully understood, adding an
area indicator to the individual level model
may reduce the potential for confounding
that could arise from omitting these area-
wide factors (34). Mixed models of this
kind have been used primarily to examine
social risk factors but have applications to
environmental epidemiology as well.

Modeling Terms Defined
Source Term
This refers to data on the source or sources
of exposure. Quantitatively, the source
term may refer to emissions per unit time
from a unique location, per unit length
from a line source (e.g., a highway), or per
unit area from a polluted region. The
units may be in absolute physical units or
in relative units if a surrogate source term
such as sales data on pesticides is used as a
substitute for actual release estimates.

Fate and Transport
The crudest transport models are simple
distance models in which exposure is
assumed to decrease as a function of dis-
tance from the source. Such a model can
be misleading for an elevated release,
where exposures can be higher away from
the source at the point where the elevated
plume touches down. Nevertheless, if one
starts far enough out or the release is from
the ground, a simple distance model
might be appropriate for an epidemiologic
study, provided that wind direction pat-
terns are reasonably symmetric around the
source location and the terrain is flat. To
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Table 2. Air modeling approach taken in key studies.

Model Uncertainty/
Study Source term Transport model Validation calibration variability analysis

Hanford Environmental Engineering calculations Puff model, k-theory Vegetation, milk, and From literature Monte Carlo variation of
Dose Reconstruction (20) air monitors for only uncertain and variable

radioiodine. Nothing for parameters
other isotopes

Fernald Dosimetry Engineering calculations, Straight-line Gaussian Measurements of Data from air Monte Carlo variation of
Reconstruction (23) checked by a backfit plume; multiple soil, air, vegetation, and monitors, wet uncertain parameters

to field data release points; milk; radiation from silos, deposition, and
deposition rate function gummed film deposition gummed film
of particle size deposition

Belarus Chernobyl Thyroid Not needed Not relevant. Models None From neck Analytical
Dose Reconstruction (29) needed only to back- measurements

correct for radioactive
decay and estimate of
time of arrival

Rocky Flats Dose and Backfit to field data Straight-line area-wide None Literature, soil Monte Carlo variation of
Exposure Reconstruction (30) for plutonium, engineering Gaussian (fugitive dust concentrations, uncertain parameters

calculations for chemicals model), straight-line and air monitors
Gaussian for chemicals

Utah leukemia and thyroid Not needed Time-of-flight model fit None Interpolated from Combined Monte Carlo
studies (15,16) to field data field readings and simulation and

historical fallout analytical error
maps propagation

TMI epidemiology Relative source term Gaussian puff Off-site dosimeter Based on in-plant Poststudy uncertainty
studies (14,32) adjustments model, readings monitor near stack analysis using Monte

terrain adjustments Carlo techniques to
simulate alternate
source terms that
could fit field data

account for asymmetries in wind patterns,
the chosen distance dependence is
weighted by a function of angle obtained
from data on wind direction frequency.
Such data are often available from a local
power plant. Because the standard Gaussian
plume straight-line model (35) is easily
implemented with the same meteorological
data, it is not difficult to include this better
description of the variation in concentra-
tion with distance. The Gaussian model
has been used for more than 30 years in
predicting concentrations downwind of
smokestacks in relatively flat terrain.
Although more sophisticated air dispersion
models are available and have been used in
epidemiologic studies, it may not make
sense to put great resources into the trans-
port model if the uncertainties in source
terms are large.

If the source term data warrant it, there
are a number of ways to improve on the
Gaussian plume model: puff models that
track puffs of pollutants moving in zigzag
patterns as the winds shift; k-theory mod-
els that account better for the turbulent
boundary layer between surface and air
than do Gaussian plume models; and
complex terrain models that account for
landscapes with hills and channels.

An interesting use of a fate and transport
model in geographic modeling is to improve
a researcher's ability to interpolate between
data points that might have been collected
for other purposes, such as air pollution
monitoring, but whose spacing is too sparse
to allow satisfactory interpolation by con-
ventional means. With geographic model-
ing, it is the fate and transport model that
determines the functional form for interme-
diate values between data points. The model
is forced to fit several data points, one
region at a time, by adjusting model para-
meters. Estimators for missing data are then
obtained by running the model at interme-
diate locations before moving to the next
region, where new model parameters are fit
to a new set of data points. This approach is
of particular use in regions where the pollu-
tant concentration measured is expected to
change rapidly over distances between sam-
pling points, e.g., close to individual point
sources of pollution.
Calibraion
In most complex models there are an
enormous number of parameters that can
be refined through optimization. Many of
the parameters and their probability distri-
butions are chosen through subjective

assessment (36,37). Calibration against
field data allows the analyst to improve
the choice of parameters. Models can be
calibrated in two ways by field data. Para-
meters of the model can be altered to
improve fits to field data, or entire classes
of models can be rejected because of
inadequacies that parameter adjustments
cannot correct.

Model calibration has been used both
to choose a source term and to pin down
values of key model parameters. Calibrated
models should produce better matches to
airborne concentrations than uncalibrated
models (38). Calibration is likely to be
particularly important when multiple
sources of pollution are involved, as uncer-
tainties of scale that would keep relative
exposure rankings the same for a single
source can switch rankings when two or
more scale factors are involved.

In the ChemRisk study at Rocky Flats
in Colorado (30), analysts used soil data to
calibrate the source term for their model.
They used air-monitoring data to fix a
parameter in their model, namely the
wind-speed dependence of resuspension of
plutonium. They chose not to hold back
any data for validation; instead all were
used at the calibration stage.
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In contrast, the Hanford study (20)
chose to use all field data for validation and
none for calibration. Similarly, in our TMI
study (14) we used all the data for valida-
tion, primarily because the relevant data set
was not available at the time the exposure
model was developed.

Other authors take a middle position,
using part of the field data for calibration
and saving some hold-out data to validate
the model (23,39,40).

Types of field data that might be rele-
vant to calibrating a geographic model of
the type discussed in this paper and used
in an epidemiologic study include air con-
centrations, soil samples, vegetation sam-
ples, blood samples, house dust, food
samples, and peat sediment. Almost any
measurement of a pollutant that has a sig-
nificant contribution from the air pathway
is a serious candidate.

Validaton
Modeling approaches were reviewed in a
1991 document on exposure assessment
issued by the National Research Council
(NRC) of the National Academy of
Sciences (9). The NRC panel recom-
mended that assumption-dependent deter-
ministic models be validated against field
data to assess uncertainties before being
used to estimate exposure. Although vali-
dation can never qualify a model for use in
all contexts (41), it is obviously important
in geographic modeling, where depen-
dence on multiple parameters is common.
Validation can also be used to assess
misclassification bias (42).

Validation is routine in exposure
assessments for epidemiologic purposes
(22,39,40,43-48). Validation can give
the analyst the best overall assessment of
model uncertainty, at least in the spatial
and temporal domain covered by the data.
Absolute errors, which affect all study
subjects equally (nondifferential uncer-
tainties), are of less importance in epi-
demiology than errors that can affect
individuals differentially. Whereas a
model that overpredicts exposures every-
where by a factor of 20 in a validation
exercise may be judged to have failed as a
tool for communicating risk to the public,
such a model can be adequate for finding
associations in epidemiology because such
an error in scale will not change ratio
measures (e.g., odds ratios).

It is doubtful that sufficient data will be
available to fully characterize model uncer-
tainty from a validation exercise alone, so
it is likely that Monte Carlo simulations

will be a component of state-of-the-art
geographic modeling.

Monte Carlo Simulation
One form of uncertainty in complex
exposure models is conceptually simple to
handle, namely, uncertainty in input
parameters (49). Once a likelihood distri-
bution is chosen for the parameters, the
propagation of the variance can be com-
puted by Monte Carlo simulation.
Random numbers are used to sample
from the various distributions and the
model run; then the resulting exposure
output is tabulated. Repeating the process
many times generates an output frequency
distribution for each individual's expo-
sure, as shown in Figure 1. The variance
of these frequency distributions is taken
to characterize the uncertainty in individ-
ual exposure estimates. For typical distrib-
utions computed for individuals in the
HTDS, the ratio of the exposure at 95%
frequency to the exposure at 5% fre-
quency was a factor of 25 (20). For the
Utah leukemia case-control study the cor-
responding ratio was approximately 5
(16). The ratio for the Utah thyroid
cohort study was approximately 60 (15).
Although a ratio of 60 represents a large
uncertainty for an individual, it proved
small on a relative basis, as the variation
in exposure across the thousands of study
subjects varied by more than four orders
of magnitude.

Unlike validation, such simulations can
never capture uncertainty in the model
structure; nevertheless, it is often the case
that the impacts of parameter uncertainty
are expected to dominate uncertainty in
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model structure. Although the overall
uncertainty for an individual's exposure is
large in most historical exposure recon-
structions, it is still possible to have mean-
ingful statistical power in a study with
sufficient numbers of subjects (usually in
the thousands) and sufficient geographical
or temporal variation in exposure.

One issue at the forefront of research in
the field of Monte Carlo exposure assess-
ment is the importance of hypothetical
correlations between model parameters.
Commonly, uncertainties in input parame-
ters are assumed to be independent. The
failure of this assumption can lead to both
under- and overestimates of exposure using
Monte Carlo techniques (50).

Typically, the output of Monte Carlo
simulations is 100 to 200 realizations of
exposures to all study subjects. Each real-
ization can be used separately to compute
regression coefficients relating health
outcomes to exposure estimates. The vari-
ation in epidemiologic quantities com-
puted with different realizations of
exposure provides a measure of the impact
of exposure uncertainty on the study's
results. It is of interest to the biostatisti-
cian that the correlations between individ-
ual exposures are maintained in using
these realizations.

The Accuracy and R b
of Geographic Modeling
A number of concerns have been raised
about geographic modeling. First, some of
the underlying data may be poor and
incomplete, forcing the analyst to make a
number of unverifiable assumptions. Source
terms, for instance, are rarely known with
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Fgure 1. Exposure distribution for an individual (200 runs of the exposure model with randomly chosen parameter
sets).
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certainty. Second, transport processes
through the environment are often so
complex that, even if the problems with the
underlying data used in the models were
absent, the models themselves would be
questionable and inherently unverifiable.

Critics of modeling believe it is prefer-
able to rely on variables that can be known
with greater accuracy, such as duration of
residence in a particular area. However,
such variables are themselves likely to
introduce measurement error because they
are crude surrogates for exposure and will
tend to create overinclusive definitions of
who is exposed. Using accurate data that
identify truly unexposed individuals as
exposed is no panacea. Because the intent
behind geographic modeling is to deter-
mine who among all potentially exposed
individuals has actually been exposed, the
exposure classification will tend to have
high specificity. As a result, estimates from
modeling may be less biased than those
based on simpler data.

The best response to concerns about
accuracy is to present a quantitative esti-
mate of uncertainty for each exposure vari-
able. When possible this should include a
test of the model or its major components
against field data. The inclusion of an
uncertainty distribution provides a firm
basis for evaluating the exposure estimates.
If the variation in exposure is much greater
than the uncertainty assigned to the esti-
mates, the model will be able to accurately
stratify exposure into at least some spatial
and temporal regions where reliable regres-
sions can be made against health data. This
was the experience in our earlier study on
the risk of cancer associated with emissions
from the TMI nuclear facility (14). By
integrating information on wind direction
and using a Gaussian dispersion model
modified to handle terrain, the model
showed that only a minority of the popula-
tion living in one sectormround the plant
had any real opportunity for exposure.
Two validation strategies were used to con-
firm the result. First, we looked at the sen-
sitivity of exposure predictions as key
model parameters were varied about the
default values. Second, we compared the
exposure predictions to those generated by
an independent source term determined
from backfitting to offsite monitoring data
using a weighted least-squares approach
that accounted for measurement error.
Agreement between the default exposures
used in the study and the alternates was
good, helping to build confidence in the
model (32).

Uncertainty Analysis

Advances in the field of risk assessment in
quantifying uncertainties in exposure mod-
eling have made it relatively straightforward,
in principle, to account for exposure uncer-

tainties in the determination of confidence
intervals and, in some cases, to correct for
a tendency of errors to introduce bias,
generally toward a null result (2,51,52).

Analytical methods of computing overall
uncertainty due to lack of exact knowledge
of parameter values are limited to a rest-

ricted class of models (53). On the other
hand, Monte Carlo simulations can be
used to characterize parameter uncertainty
in any model.

Methods and guidelines for making
and using Monte Carlo simulations to

characterize exposure predictions have been
discussed by a number of authors (54,55).
In the absence of field data to characterize
a parameter distribution, analysts some-

times rely on expert judgments from a

sample of experts to define the distribution
(56). The use and accuracy of such elicita-
tions have been discussed in detail by
Cooke (37). Reliance on expert judgment
to estimate ranges for uncertain model
parameters has obvious similarities to the
use in occupational epidemiology of a

panel of experts to develop job exposure

matrices that rank exposure levels for dif-
ferent work situations and time periods
(40,57-59).

The uncertainty in a geographic model
affects the power of a study to find a signif-
icant correlation between exposure and
health outcome. The effects on power can

be determined by simulating an epidemio-
logic study and examining the reduction in
power that occurs as the measured expo-

sures vary further from the true exposures.

In our simulation of an epidemiologic
study of breast cancer, we found that the
power changed slowly at first as the overall
uncertainty in exposure was increased, ulti-
mately plummeting after some critical
threshold was reached. Presumably, the
rapid decline in power occurred as the dif-
ferential uncertainty in the exposure esti-
mates began to overwhelm the variability
in exposure across the population.

Confidence intervals around the quan-

tities calculated will be widened by the
uncertainty in exposures. To our knowl-
edge, the HTDS is the first study to account

for the correlations in exposure uncertainty
that exist across study subjects. For instance,
the exposure estimated for all study subjects
present in 1945 will increase when the scale

factor for release of radioiodine in 1945 is
increased. The HTDS team plans to adapt
a methodology developed by Guo and
Thompson (60) to correct for the attenua-
tion in regression coefficients that expo-
sure uncertainty can bring and to estimate
the impact exposure uncertainty has on
widening the confidence limits (61).

In pilot work on polycyclic aromatic
hydrocarbon (PAH) exposures in Long
Island, New York, [part of the Long Island
Breast Cancer Study Project (62)], we have
experimented with bootstrap statistical
techniques (63) to handle the exposure
uncertainty problem and sampling error
simultaneously. The bootstrap approach,
so named to convey its power of seemingly
lifting oneself by one's biostatistical boot-
straps, is now standard and routine, allow-
ing analysts to take advantage of normally
untapped information a data set carries
about the distribution from which it is
sampled. In particular, the bootstrap
approach, which here involves repetitive
resampling from the original set of cases
and controls without worry about duplica-
tion, is useful for estimating complex func-
tions like confidence limits. For each of
our Monte Carlo exposure realizations, we
generate a new bootstrap set of simulated
cases and controls and perform a regres-
sion. The results of several hundred of
these regressions generate frequency data
from which 95% confidence limits can be
read off for each coefficient linked to an
explanatory variable. As long as the Monte
Carlo sampling is part of the analysis to
characterize exposure uncertainty, the addi-
tion of simultaneous bootstrap resampling
on cases and controls adds no significant
increase in computer time.

In risk assessments the preferred
approach is to distinguish between vari-
ability and uncertainty (64). Variability
refers to real variations that occur in peo-
ple or nature, as opposed to our ignorance
of a model parameter. Real variations
include person-to-person differences in
breathing rate as well as site-to-site differ-
ences in terrain that affect meteorological
dispersion. Although the distinction
between variability and uncertainty is
important in risk communication and risk
management, it is not yet a distinction
made by epidemiologists.

Amblig te Model Components
and Identisig Proje-Specific
Paamme
Exposure reconstruction reports have been
likened to detective stories. "Each one has
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its own flavor..., but the flow of the plot is
pretty much the same" (65).

With so many diverse fate and transport
models in existence, the analyst's first
responsibility-to find an appropriate
model or suite of models-is relatively
easy. Web sites of the U.S. Environmental
Protection Agency (U.S. EPA) (66-68)
and the California Air Resources Board
(69) are valuable resources for locating and
downloading exposure models of all types.
Furthermore, the U.S. EPA has a suite of
models, including multisource models, on
its "Exposures Models Library" CD-ROM
(70). An advantage of working with a U.S.
EPA-approved model is that the uncertain-
ties and limitations of the model have
already been investigated.

More difficult than finding an appro-
priate suite of models is gathering the
information for the project-specific para-
meters that these models require. Com-
plete historical information and scientific
understanding are never available. In gen-
eral, for an exposure or dose reconstruction
one assembles as much of the parameter
information as is easy to find, bridges the
gaps with the best approximations that can
be made, and proceeds as far down the
model chain as possible, relying on the
uncertainty analysis to give the overall
process its final rigor.

The effort may be as straightforward as
analyzing readily available plant process
records to estimate annual average releases
of arsenic and inputting them to the U.S.
EPA fugitive dust model (70), which uses
average meteorological frequency data. This
input and analysis was done in the study by
Ihrig et al. (5) to get inhalation exposures.
Alternatively, the effort may be complex.
Analysts for the Hanford Environmental
Dose Reconstruction Study (20) sifted
through warehouses of documents to find
information for model parameters, mod-
eled the process of dissolving irradiated
nuclear fuel to obtain daily releases of
radioiodine, and then entered the release
rates into a massive suite of computer mod-
els that took into account time-sequenced
meteorological data.

From our review of the literature on
exposure reconstructions, we have identi-
fied a number of steps that analysts gener-
ally follow. The order of the steps listed is
somewhat arbitrary.

Ste 1: Determine the Polltant(s) to
Be Modelrd. In some cases the pollutant(s)
of interest have already been determined. If
not, one must look for substances that have
a biologically plausible connection to the

health end points of the study. The U.S.
EPA's web-based Integrated Risk Infor-
mation System (IRIS) is one source of
information that can be used to screen can-
didate chemicals (71), as are the publica-
tions of the Agency for Toxic Substances
and Disease Registry (ATSDR) (72).
Sources of data for radionuclides can be
found in reports of the International
Commission on Radiological Protection
(73) and the U.S. EPA (74).

IRIS (71) and the ATSDR publications
(72) also include references to the litera-
ture on the pharmacokinetics of chemicals
once they have entered the body. For some
chemicals (and most radionuclides), suffi-
cient information is available to relate
intake of pollutants to the quantity that
reaches target organs, or in the case of
radioactivity, the energy absorbed. In such
cases an exposure model can proceed to a
dose model. Usually this step is handled by
simple multiplication using age-specific
coefficients taken from the literature. Note,
however, there are individual variations in
organ uptake that should be included in
the overall assessment when possible.

For certain pollutants the dose response
for the health end point of concern has
been identified in earlier studies. If any of
the pollutants have health-effects thresh-
olds, modeling effort for that pollutant
should be focused on exposure levels in a
range bracketing the threshold.

Interestingly, geographic models can
provide more information than epidemi-
ologists are used to seeing; such models
can give complete time histories of
exposure, not just cumulative or peak
exposures. To our knowledge such infor-
mation has not yet been exploited in
environmental epidemiology.

Step 2: Review the History of
Pollutant Usage and the Nature of
Relses to the Environmenw A review of
a substance's general historical usage,
including its sales history, is helpful in
establishing the time period that might
bound the modeling exercise. When the
focus of the study is a particular facility,
such as a smelter, a review of the facility's
geographical/hydrological layout and his-
tory of operations is helpful in choosing
which type of transport model is appropri-
ate. For instance, there are dispersion mod-
els adapted for high stack emissions, for
resuspension from dust piles, for leaks from
building cracks, and so on. There are mod-
els for point sources and for distributed
sources. If the temperatures of the effluent
and/or its vent velocity are high, a special

model may be necessary to estimate the
height to which the plume will rise before
dispersing horizontally.

As for water dispersion, the nature of
the facility's past and present operations
will determine whether to indude models
for surface runoff, surface percolation,
and/or deep well disposal.

Step 3: Determine Population and
Time Frame to Be Mod&ees A decision-
informed to a certain extent by an under-
standing of the pollutant transport-must
ultimately be made as to the size, extent,
and distribution of the population and time
period for which exposures are to be mod-
eled. This will determine such practical
modeling details as how far back in time
releases must be estimated and whether a
short-range or long-range dispersion model
is necessary.

Step 4: Quantify the Pollutant
Relse Rates (Soure Ter~s) over Time.
It is in the gathering of site-specific infor-
mation, such as in the determination of a
source term, that exposure reconstructions
are likely to differ the most. Project-specific
research is always necessary and may
involve searching through files and inter-
viewing people with direct experience in
project-related issues. Data may be col-
lected on stack or tailpipe emission mea-
surements at the facility or at similar
facilities. Information on historical records
of operations, such as product shipped,
chemicals purchased, and chemicals in
stock, may also be useful.

Source terms do not have to be from
point sources. To model DDT air expo-
sures in our Long Island pilot study (62),
we used the geographic area of salt marshes
and farms that were sprayed with DDT
before it was banned in the early 1970s as
the basic database. With the assumption
that spraying was constant per unit area, it
is the areal shape that determines the loca-
tion of highest exposures. We were able to
locate handwritten records from the Suffolk
County, New York, agricultural extension
service. These records provided the acreage
of potato crops from before the U.S.
Department of Agriculture (USDA) began
recording them and before DDT was first
produced. This project-specific data-
gathering exercise was important because it
demonstrated that the potato acreage had
not changed much since the 1940s.

Although the source term from specific
releases is usually determined from plant
records or from knowledge of the engineer-
ing of the plant's operation, sometimes there
are sufficient environmental measurements
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available in space and time to allow a
backfit to be made to infer the magnitude
and timing of the releases. This was the
case at Rocky Flats for plutonium, where
accumulated deposits in soil had been
measured since the 1970s. On the other
hand, no such environmental record was
available for chemicals, so engineering cal-
culations were used to estimate this com-
ponent. In some cases a geographic model
might bypass considerations of the pollu-
tant's origin altogether and work directly
with a detailed map of deposition on the
ground, modeling how much of the cont-
aminants would have been eaten by graz-
ing animals and ended up in products
sold in stores.

Values for parameters not identifiable
from facility records or, more likely, fre-
quency distributions for such parameters
must be determined from the literature
and/or field measurements. Only in rare
cases does the analyst find that the informa-
tion needed has already been collected and
is available at a reasonable cost, as is the
case for U.S. EPA data on large combustion
sources. More often one finds that the full
set of data is available from a private source
but is too expensive. It is then necessary to
try other less-complete approaches. A
review of the modeling literature indicates
that analysts use certain basic principles to
fill gaps in data: In some cases analysts sim-
ply use the values they have extracted from
the literature to estimate a parameter distri-
bution. To guard against expert overconfi-
dence (37), it is preferable to fit the data to
long-tailed distributions such as log-nor-
mals. Elicitation of subjective parameter
estimates from experts that are combined
into an overall distribution is now done in a
formal manner, taking into account lessons
learned about the accuracy of past expert
assessments (56).

In some cases the needed parameter
cannot be determined by any of these
methods but can be approximated from
related data. Common techniques used for
this purpose include interpolation, extrapo-
lation, and disaggregation.

Interpolation refers to the process of
inferring data values at locations that lie
between points where measurements have
actually been made. Often a smooth func-
tional form will be fit to the existing data
and the functional form used to infer the
actual imputed value. Interpolation has
been widely used in exposure modeling
for epidemiologic purposes. For instance,
the fallout deposition GIS database
underlying the Utah studies made heavy

use of interpolation between measured
values found on unpublished fallout maps
collected after each weapons test (65).

Extrapolation differs from interpolation
in that the inferred data lie outside the
region containing the measured values.
The functional form fit to the available val-
ues is extended beyond the data points. For
instance, at Fernald, Ohio, scrubber filter
efficiencies measured between 1961 and
1965 were extrapolated as far back as 1951
and as far forward as 1981, assuming simi-
lar trends before and after (23).

Disaggregation is a technique that few
modern risk assessments can avoid, yet is
unfamiliar to those outside the modeling
community. It is the process of breaking
down summed data into its unmeasured
components based on reasonable assump-
tions. For instance, at Hanford there were
periods for which only total releases of
radioactivity to the river were available,
not values for individual radionuclides.
To obtain estimates for the individual
release percentages, analysts used sub-
jective distributions they believed to be
reasonable as input to a Monte Carlo
simulation (75).

With all three techniques-interpola-
tion, extrapolation, and disaggregation-
an estimate of the uncertainty of the
derived values should be made and propa-
gated through to the final exposure values.

In some cases surrogate values are used
for parameter values or distributions.
Model validation is particularly important
in such circumstances. In our TMI study
(14) we used a surrogate for releases of
stack radioactivity, namely stripchart read-
ings from radiation counters near the
exhaust stack. The readings were thought
to rise and fall with the emissions of
radioactivity. In our pilot for the Long
Island Breast Cancer Study Project (62) we
have used carbon monoxide emissions, for
which extensive databases exist, as a surro-
gate for airborne releases of PAHs because
both emissions are associated with incom-
plete combustion. For validation, we found
data correlating carbon monoxide (CO)
emissions (76) and PAH air deposition in
high marsh sediment (77) as far back as
1940, as well as direct correlations between
airborne CO and PAH over periods of
months (78).

Step 5: Determine the Major
Pathways by Which Study Pollutants
Likely Reached the Study Population.
The obvious air pathways are direct migra-
tion through air to lungs and deposition
onto food. The obvious water pathways are

direct passage through groundwater to
wells or into rivers tapped downstream for
community drinking water. However,
pollutants can cross media boundaries before
reaching people and can spend considerable
time in reservoirs before being recycled into
the air and into drinking water.

As an aid to identifying a full set of
pathways, analysts can review other geo-
graphic modeling studies, risk assessments,
and/or environmental impact statements
carried out for facilities or technologies
comparable to those under study. These
documents, along with ATSDR publi-
cations on specific pollutants (72), also
can help in reaching a decision as to
which pathways are significant enough to
justify modeling.

Step 6: Pick the Transport/Storage
Model to Be Usedfor Each Included
Pathway. Transport models convert emis-
sion rates of pollutants to concentrations,
whether they are measured in nanograms
per cubic meter of air, curies per meter
squared of land surface, or micrograms per
kilogram of food. The analyst must match
the requirements of the study to the choice
of model. To do so it is helpful to ask a
series of questions: Can the pollutant be
transformed on the way to people? For
instance, if it is a metal, can its valence
state change? If it is radioactive can it decay
and possibly transform into another
radioactive substance? If so one may want
to use a transport model that contains
options for transformation, or one may add
on simple correction factors. Can the pol-
lutant be stored and released at a later
time? If so one may add in a compartment
model. Is any stack on site particularly high
or ejecting very hot gases? If so it may be
necessary to make use of a special plume
rise model.

What is the nature of the terrain? If it
consists of rolling hills of moderate slope, it
will be possible to use a program that is
based on Gaussian plume algorithms, such
as the U.S. EPA fugitive dust model (70).
On the other hand, if the terrain is com-
plex, with valleys and high hills, one will
want to use a complex terrain model,
although the uncertainty in complex ter-
rain models can be large and has not always
been well characterized.

Realistically, choice of a model is often
based on convenience. A model may have
been used for years at the site under study.
The analyst may be familiar with a partic-
ular version. As long as the transport
model utilized has been quantitatively
compared with other standard models or is
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independently validated, there is no reason
to begrudge the savings in time and effort
that will result from using that model.

Step 7: Decide IfAny New Model
Components Must Be Constructed. It is
possible that some site-specific feature
might require modeling that cannot be
obtained from one of the programs in the
repertoire provided by the U.S. EPA or the
larger state agencies. However, in our
experience, it is almost always possible to
find a relevant model in the scientific litera-
ture or obtain one from a government
agency, whether it involves revolatilization
of pesticides from soil, uptake of pollution
by vegetation, or residence time in soil.
Reference to such work can usually be
found by searching through back issues of
journals such as Environmental Science and
Technology (American Chemical Society,
Washington), Chemosphere (Elsevier
Science, Exeter, United Kingdom), Risk
Analysis (Plenum Press, New York), Health
Physics (Williams & Wilkins, Baltimore),
Science of the Total Environment (Elsevier
Science Ireland, Shannon, Ireland), JAPCA
(Air & Waste Management Association,
Pittsburgh, Pennsylvania), Atmospheric
Environment (Elsevier Science, Oxon,
United Kingdom), Environmental Research
(Academic Press, Orlando, Florida), and
Environmental Health Perspectives (National
Institute of Environmental Health Sciences,
Research Triangle Park, North Carolina).

Step 8: Convert Concentration
Predictions to Integrated Exposures or
Doses. Whereas the geographic model
produces concentrations in time and
space, the epidemiologist may want a
measure of the cumulative intake or
absorption of a pollutant. This informa-
tion may be provided by a dose calcula-
tion or approximated by integrating
concentration over exposure time. A dose
calculation, or full-scale modeling effort
in complex cases, tabulates the amount of
pollutant entering or absorbed by the cells
of a study subject, accounting for the
duration of time spent by people at each
location in the study area. Current
approaches to determining integrated
exposures or doses from concentration
data are based on relatively general
assumptions about the activity patterns
that determine how much time people
spend in each location (9). Questionnaire
data can improve these estimates.

Step 9: Ensure the Results Are
Convenient for Epidemiologic Analysis.
It is desirable to produce exposure output
that includes estimates of the impacts of

measurement error and exposure misclassi-
fication. Validation of the model against
field data, as discussed in "Modeling Terms
Defined," can help in this regard, as can
Monte Carlo techniques. If the models
chosen for the study are not inherently
adapted for Monte Carlo analysis, a simple
solution may be to build a metaprogram
that will repeatedly run the model in batch
mode with different assumptions, thereby
effectively turning the system into a
Monte Carlo engine that can give the
desired epidemiologic estimates.

A summary of the approach taken by
key studies is given in Table 2.

Conditions Appropriate for
Use of Geographic Modeling
in Epidemiology
Our review of the literature identified
three situations where geographic model-
ing could be useful for epidemiologic
studies: to assist in study design, to assist
in assigning exposure estimates to study
subjects, and to assist in analysis and use
of field measurements.

Conditions When Geographic
Modeling Can Be Usefill
in Study Design
Gleographic modeling can provide an
estimate of both the typical magnitude of
the exposure and the range of variability to
be expected across various potential study
populations. Geographic modeling can be
of particular assistance if multiple sources
are involved, making intuition an unreliable
predictor of relative exposure.

Geographic modeling can help in the
design of study questionnaires. For exam-
ple, as a result of our modeling efforts, a
question about distance to the nearest road
was included on the soil-sampling ques-
tionnaire for the Long Island Breast
Cancer Study Project (62). Pilot work had
indicated that distance would account for
a significant amount of the variation in
pollution from automobiles.

Geographic modeling can help in decid-
ing on the number of samples that should
be collected and their geographic distribu-
tion, if environmental sampling data are to
be used as an exposure surrogate.

Conditions Appropriate
for Assignig E;xposure Estimates
by Geographic Modeling
Geographic modeling might serve as a
substitute for, or complement to, simpler
exposure estimates; for instance, when

simple distance relationships fronm sources

are not expected to be a reliable indicator
of exposure; when multiple sources are
close enough together to merge their
impacts; when historical exposures may have
been different from modern exposures,
making current monitoring levels a poor
indicator of past exposure; or when the
population is sufficiently mobile and the
pollutant sufficiently distributed that
account must be made of exposures at

multiple locations such as home and work.

ConditionsWhen Geographic
Modeling Can Help with Analysis
and Utilization of Field Data
As discussed in "Fate and Transport," a
possible use of geographic modeling is to
improve a researcher's ability to interpolate
between data that might have been col-
lected for other purposes, such as air pollu-
tion monitoring. Even for data specifically
collected for an epidemiologic study,
model-based interpolation could be useful
if data have only been collected for a subset
of the full study population.
Conclusion
Recent developments in quantifying
uncertainty have helped to answer many of
the methodological concerns expressed in
the past about the use of geographical
modeling in epidemiologic studies. Experi-
ence gained in large complex historical
reconstructions has shown that, with suffi-
cient effort, data can be found to recon-
struct exposures as many as 50 years in the
past. Even when individual exposure
uncertainties have turned out to be large,
the range in exposures across the study pop-
ulation has proven larger still, allowing
meaningful estimates of health effects to be
made, at least in studies involving thousands
of subjects.

This review of geographic modeling
via the air pathway shows that the metho-
dology has a potentially wide application
in epidemiology.
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